237 research outputs found

    30-Day emergency department revisit rates among older adults with documented dementia

    Get PDF
    OBJECTIVES: Published literature on national emergency department (ED) revisit rates among older adults with dementia is sparse, despite anecdotal evidence of higher ED utilization. Thus we evaluated the odds ratio (OR) of 30-day ED revisits among older adults with dementia using a nationally representative sample. DESIGN: We assessed the frequency of claims associated with a 30-day ED revisit among Medicare beneficiaries with and without a dementia diagnosis before or at index ED visit. We used a logistic regression model controlling for dementia, age, sex, race, region, Medicaid status, transfer to a skilled nursing facility after ED, primary care physician use 12 months before index, and comorbidity. SETTING: A nationally representative sample of claims data for Medicare beneficiaries aged 65 and older who maintained continuous fee-for-service enrollment during 2015 and 2016. Only outpatient claims associated with an ED visit between January 2016 and November 2016 were included as a qualifying index encounter. PARTICIPANTS: We identified 240 249 patients without dementia and 54 622 patients for whom a dementia code was recorded in the year before the index encounter in 2016. RESULTS: Our results indicate a significant difference in unadjusted 30-day ED revisit rates among those with an ED dementia diagnoses (22.0%) compared with those without (13.9%). Our adjusted results indicated that dementia is a significant predictor of 30-day ED revisits (P \u3c .0001). Those with a dementia diagnosis at or before the index ED visit were more likely to have experienced an ED revisit within 30 days (OR = 1.27; 95% confidence interval = 1.24-1.31). CONCLUSION: Dementia diagnoses were a significant predictor of 30-day ED revisits. Further research should assess potential reasons why dementia is associated with markedly higher revisit rates, as well as opportunities to manage and transition dementia patients from the ED back to the community more effectively. J Am Geriatr Soc 67:2254-2259, 2019

    Expansion Dating: Calibrating Molecular Clocks in Marine Species from Expansions onto the Sunda Shelf Following the Last Glacial Maximum

    Get PDF
    The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2% per lineage per million years. Recently, calibrations made with ancient DNA (aDNA) from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. aDNA methods for recent calibrations are not available for most marine taxa so instead we use radiometric dates for sea-level rise onto the Sunda Shelf following the Last Glacial Maximum (starting similar to 18,000 years ago), which led to massive population expansions for marine species. Instead of divergence dating, we use a two-epoch coalescent model of logistic population growth preceded by a constant population size to infer a time in mutational units for the beginning of these expansion events. This model compares favorably to simpler coalescent models of constant population size, and exponential or logistic growth, and is far more precise than estimates from the mismatch distribution. Mean rates estimated with this method for mitochondrial coding genes in three invertebrate species are elevated in comparison to older calibration points (2.3-6.6% per lineage per million years), lending additional support to the hypothesis of calibration time dependency for molecular rates

    Expansion Dating: Calibrating Molecular Clocks in Marine Species from Expansions onto the Sunda Shelf following the Last Glacial Maximum

    Get PDF
    The rate of change in DNA is an important parameter for understanding molecular evolution, and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 million years, and are typically 0.5% - 2% per lineage per million years. Recently, calibrations made with ancient DNA from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. Ancient DNA methods for recent calibrations are not available for most marine taxa so instead we use radiometric dates for sea-level rise onto the Sunda Shelf following the Last Glacial Maximum (starting ~18,000 years ago), which led to massive population expansions for marine species. Instead of divergence dating, we use a two epoch coalescent model of logistic population growth preceded by a constant population size to infer a time in mutational units for the beginning of these expansion events. This model compares favorably to simpler coalescent models of constant population size, and exponential or logistic growth, and is far more precise than estimates from the mismatch distribution. Mean rates estimated with this method for mitochondrial coding genes in three invertebrate species are elevated in comparison to older calibration points (2.3% - 6.6% per lineage per million years), lending additional support to the hypothesis of calibration time-dependency for molecular rates

    Patterns of Extinction Risk and Threat for Marine Vertebrates and Habitat-Forming Species in the Tropical Eastern Pacific

    Get PDF
    Marine conservation activities around the globe are largely undertaken in the absence of comprehensive species-specific information. To address this gap, complete regional species assemblages of major marine taxa are being progressively assessed against the Categories and Criteria of the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. The present study is the first analysis of entire major components of the biota of a large marine biogeographic region conducted in the Tropical Eastern Pacific (TEP). It is based on recently completed IUCN Red List assessments for all known species of bony and cartilaginous shorefishes, corals, mangroves, and seagrasses in the TEP. Twelve percent of the \u3e1600 species assessed are in threatened categories, indicative of elevated extinction risk. Spatial analysis of all assessed taxonomic groups, including previous IUCN Red List assessments for seabirds, marine mammals, and marine turtles, highlights specific geographical areas of elevated threatenedspecies richness. The distribution of threatened species in the TEP is primarily linked to areas with high rates of overfishing, habitat loss, and increasing El Niño-Southern Oscillation (ENSO) event impacts, as well as oceanic islands with high stochastic risk factors for endemic species. Species assigned to the highest threat categories have life history traits that likely decrease their resilience to various regional and site-specific threats. Comprehensive information in the form of IUCN Red List assessments combined with spatial analysis will greatly help to refine both site- and species-specific marine conservation priorities in the TEP

    Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific

    Get PDF
    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region

    Evolutionary pathways toward gigantism in sharks and rays

    Get PDF
    Through elasmobranch (sharks and rays) evolutionary history, gigantism evolved multiple times in phylogenetically distant species, some of which are now extinct. Interestingly, the world's largest elasmobranchs display two specializations found never to overlap: filter feeding and mesothermy. The contrasting lifestyles of elasmobranch giants provide an ideal case study to elucidate the evolutionary pathways leading to gigantism in the oceans. Here, we applied a phylogenetic approach to a global dataset of 459 taxa to study the evolution of elasmobranch gigantism. We found that filter feeders and mesotherms deviate from general relationships between trophic level and body size, and exhibit significantly larger sizes than ectothermic‐macropredators. We confirm that filter feeding arose multiple times during the Paleogene, and suggest the possibility of a single origin of mesothermy in the Cretaceous. Together, our results elucidate two main evolutionary pathways that enable gigantism: mesothermic and filter feeding. These pathways were followed by ancestrally large clades and facilitated extreme sizes through specializations for enhancing prey intake. Although a negligible percentage of ectothermic‐macropredators reach gigantic sizes, these species lack such specializations and are correspondingly constrained to the lower limits of gigantism. Importantly, the very adaptive strategies that enabled the evolution of the largest sharks can also confer high extinction susceptibility

    Shortfalls and Solutions for Meeting National and Global Conservation Area Targets

    Get PDF
    Governments have committed to conserving greater than or equal to 17% of terrestrial and greater than or equal to 10% of marine environments globally, especially areas of particular importance for biodiversity through ecologically representative Protected Area (PA) systems or other area-based conservation measures , while individual countries have committed to conserve 3-50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59-68% of ecoregions, 77-78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km super(2) terrestrial PA network needs only 3.3 million km super(2) to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, cost-efficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures

    Asymptotic behaviour and optimal word size for exact and approximate word matches between random sequences

    Get PDF
    BACKGROUND: The number of k-words shared between two sequences is a simple and effcient alignment-free sequence comparison method. This statistic, D(2), has been used for the clustering of EST sequences. Sequence comparison based on D(2 )is extremely fast, its runtime is proportional to the size of the sequences under scrutiny, whereas alignment-based comparisons have a worst-case run time proportional to the square of the size. Recent studies have tackled the rigorous study of the statistical distribution of D(2), and asymptotic regimes have been derived. The distribution of approximate k-word matches has also been studied. RESULTS: We have computed the D(2 )optimal word size for various sequence lengths, and for both perfect and approximate word matches. Kolmogorov-Smirnov tests show D(2 )to have a compound Poisson distribution at the optimal word size for small sequence lengths (below 400 letters) and a normal distribution at the optimal word size for large sequence lengths (above 1600 letters). We find that the D(2 )statistic outperforms BLAST in the comparison of artificially evolved sequences, and performs similarly to other methods based on exact word matches. These results obtained with randomly generated sequences are also valid for sequences derived from human genomic DNA. CONCLUSION: We have characterized the distribution of the D(2 )statistic at optimal word sizes. We find that the best trade-off between computational efficiency and accuracy is obtained with exact word matches. Given that our numerical tests have not included sequence shuffling, transposition or splicing, the improvements over existing methods reported here underestimate that expected in real sequences. Because of the linear run time and of the known normal asymptotic behavior, D(2)-based methods are most appropriate for large genomic sequences

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Phylogeography Unplugged: Comparative Surveys in the Genomic Era

    Get PDF
    In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional ( unplugged ) approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches
    corecore